A physically constrained classical description of the homogeneous nucleation of ice in water.
نویسندگان
چکیده
Liquid water can persist in a supercooled state to below 238 K in the Earth's atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227-232 K on very short time scales using an X-ray laser technique. In summary, we present a new physically constrained parameterization for homogeneous ice nucleation which is consistent with the latest literature nucleation data and our physical understanding of the properties of supercooled water.
منابع مشابه
Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any ...
متن کاملVolume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach
Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV (T ), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution ...
متن کاملFree energy landscapes for homogeneous nucleation of ice for a monatomic water model.
We simulate the homogeneous nucleation of ice from supercooled liquid water at 220 K in the isobaric-isothermal ensemble using the MW monatomic water potential. Monte Carlo simulations using umbrella sampling are performed in order to determine the nucleation free energy barrier. We find the Gibbs energy profile to be relatively consistent with that predicted by classical nucleation theory; the...
متن کاملProduction of Ice Nucleation Deficient (Ice-) Mutants of the Epiphytic Strains of Erwinia herbicola
To mutate the Ice Nucleation Active (INA) gene in Erwinia herbicola strains, Tn-5 transposon carried by Psup2021 plasmid was used. This plasmid was transferred to the bacterial cells by electroporation. Electrotransformation was carried out for 2.5 ms at 1800 v and 1 mm distance between the electrodes. Polymerase chain reaction was used for determination of presence or loss of INA gene, using a...
متن کاملMultivariate Analysis of Homogeneous Nucleation Rate Measurements: Ii. Temperature and Vapor Concentration Dependence
The multivariate analysis of nucleation rate dependency on vapor concentration, initiated in Part I [McGraw and Zhang, 2007], is extended to include temperature. Nucleation rate sensitivity to changes in vapor concentration and temperature are described using kinetic extensions of the nucleation theorem (KNTs). The nucleation rate is found to be highly multi-linear in selected KNT-suggested tem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 145 21 شماره
صفحات -
تاریخ انتشار 2016